Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(12): 9656-9673, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132449

RESUMO

DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pinewood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives at low temperatures through third-stage dispersal juvenile, making it a major pathogen for pines in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal juvenile, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal juvenile and three other propagative juvenile stages of PWN. Our findings revealed that the average methylation rate of cytosine in the samples ranged from 0.89% to 0.99%. Moreover, we observed significant DNA methylation changes in the third-stage dispersal juvenile and the second-stage propagative juvenile of PWN, including differentially methylated cytosine (DMCs, n = 435) and regions (DMRs, n = 72). In the joint analysis of methylation-associated transcription, we observed that 23 genes exhibited overlap between differentially methylated regions and differential gene expression during the formation of the third-stage dispersal juvenile of PWN. Further functional analysis of these genes revealed enrichment in processes related to lipid metabolism and fatty acid synthesis. These findings emphasize the significance of DNA methylation in the development of third-stage dispersal juvenile of PWN, as it regulates transcription to enhance the probability of rapid expansion in PWN.

2.
Front Microbiol ; 14: 1240984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125565

RESUMO

Introduction: The pinewood nematode (PWN) is responsible for causing pine wilt disease (PWD), which has led to the significant decline of conifer species in Eurasian forests and has become a globally invasive quarantine pest. Manipulating plant-associated microbes to control nematodes is an important strategy for sustainable pest management. However, it has proven difficult to find pine-associated bacteria that possess both nematocidal activity and the ability to colonize pine tissues. Methods: The stress experiments with turpentine and pine tissue extract were carried out to screen for the desired target strain that could adapt to the internal environment of pine trees. This strain was used to construct an engineered nematocidal strain. Additionally, a fluorescent strain was constructed to determine its dispersal ability in Pinus massoniana seedlings through plate separation, PCR detection, and fluorescence microscopy observations. The engineered nematocidal strain was tested in the greenhouse experiment to assess its ability to effectively protect P. massoniana seedlings from nematode infection. Results: This study isolated a Bacillus toyonensis strain Bxy19 from the healthy pine stem, which showed exceptional tolerance in stress experiments. An engineered nematocidal strain Bxy19P3C6 was constructed, which expressed the Cry6Aa crystal protein and exhibited nematocidal activity. The fluorescent strain Bxy19GFP was also constructed and used to test its dispersal ability. It was observed to enter the needles of the seedlings through the stomata and colonize the vascular bundle after being sprayed on the seedlings. The strain was observed to colonize and spread in the tracheid after being injected into the stems. The strain could colonize the seedlings and persist for at least 50 days. Furthermore, the greenhouse experiments indicated that both spraying and injecting the engineered strain Bxy19P3C6 had considerable efficacy against nematode infection. Discussion: The evidence of the colonization ability and persistence of the strain in pine advances our understanding of the control and prediction of the colonization of exogenously delivered bacteria in pines. This study provides a promising approach for manipulating plant-associated bacteria and using Bt protein to control nematodes.

3.
Stress Biol ; 3(1): 50, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991550

RESUMO

The pinewood nematode (PWN) Bursaphelenchus xylophilus is a forestry quarantine pest and causes an extremely dangerous forest disease that is spreading worldwide. Due to the complex pathogenic factors of pine wood nematode disease, the pathogenesis is still unknown. B. xylophilus ultimately invades a host and causes death. However, little is known about the defence-regulating process of host pine after infection by B. xylophilus at the molecular level. Therefore, we wanted to understand how Pinus massoniana regulates its response to invasion by B. xylophilus. P. massoniana were artificially inoculated with B. xylophilus solution, while those without B. xylophilus solution were used as controls. P. massoniana inoculated with B. xylophilus solution for 0 h, 6 h, 24 h, and 120 h was subjected to high-throughput sequencing to obtain transcriptome data. At various time points (0 h, 6 h, 24 h, 120 h), gene transcription was measured in P. massoniana inoculated with PWN. At different time points, P. massoniana gene transcription differed significantly, with a response to early invasion by PWN. According to Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, P. massoniana response to PWN invasion involves a wide range of genes, including plant hormone signal transformation, flavonoid biosynthesis, amino sugar and nucleoside sugar metabolism, and MAPK signalling pathways. Among them, inoculation for 120 hours had the greatest impact on differential genes. Subsequently, weighted gene coexpression network analysis (WGCNA) was used to analyse transcriptional regulation of P. massoniana after PWN infection. The results showed that the core gene module of P. massoniana responding to PWN was "MEmagenta", enriched in oxidative phosphorylation, amino sugar and nucleotide sugar metabolism, and the MAPK signalling pathway. MYB family transcription factors with the highest number of changes between infected and healthy pine trees accounted for 20.4% of the total differentially expressed transcription factors. To conclude, this study contributes to our understanding of the molecular mechanism of initial PWN infection of P. massoniana. Moreover, it provides some important background information on PWN pathogenic mechanisms.

4.
Front Plant Sci ; 13: 973305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388494

RESUMO

Salicylic acid (SA) is generally considered to be a critical signal transduction factor in plant defenses against pathogens. It could be converted to methyl salicylate (MeSA) for remote signals by salicylic acid methyltransferase (SAMT) and converted back to SA by SA-binding protein 2 (SABP2). In order to verify the function of SAMT in poplar plants, we isolated the full-length cDNA sequence of PagSAMT from 84K poplar and cultivated PagSAMT overexpression lines (OE-2 isolate) to test its role in SA-mediated defenses against the virulent fungal pathogen Botryosphaeria dothidea. Our results showed that after inoculation with B. dothidea, OE-2 significantly increased MeSA content and reduced SA content which is associated with increased expression of SAMT in both infected and uninfected leaves, when compared against the wild type (WT). Additionally, SAMT overexpression plant lines (OE-2) exhibited higher expression of pathogenesis-related genes PR-1 and PR-5, but were still susceptible to B. dothidea suggesting that in poplar SA might be responsible for resistance against this pathogen. This study expands the current understanding of joint regulation of SAMT and SABP2 and the balance between SA and MeSA in poplar responses to pathogen invasion.

5.
Plants (Basel) ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365304

RESUMO

Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.

6.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293134

RESUMO

RNA interference (RNAi) efficiency dramatically varies among different nematodes, which impacts research on their gene function and pest control. Bursaphelenchus xylophilus is a pine wood nematode in which RNAi-mediated gene silencing has unstable interference efficiency through soaking in dsRNA solutions, the factors of which remain unknown. Using agarose gel electrophoresis, we found that dsRNA can be degraded by nematode secretions in the soaking system which is responsible for the low RNAi efficiency. Based on the previously published genome and secretome data of B. xylophilus, 154 nucleases were screened including 11 extracellular nucleases which are potential factors reducing RNAi efficacy. To confirm the function of nucleases in RNAi efficiency, eight extracellular nuclease genes (BxyNuc1-8) were cloned in the genome. BxyNuc4, BxyNuc6 and BxyNuc7 can be upregulated in response to dsGFP, considered as the major nuclease performing dsRNA degradation. After soaking with the dsRNA of nucleases BxyNuc4/BxyNuc6/BxyNuc7 and Pat10 gene (ineffective in RNAi) simultaneously for 24 h, the expression of Pat10 gene decreased by 23.25%, 26.05% and 11.29%, respectively. With soaking for 36 h, the expression of Pat10 gene decreased by 43.25% and 33.25% in dsBxyNuc6+dsPat10 and dsBxyNuc7+dsPat10 groups, respectively. However, without dsPat10, dsBxyNuc7 alone could cause downregulation of Pat10 gene expression, while dsBxyNuc6 could not disturb this gene. In conclusion, the nuclease BxyNuc6 might be a major barrier to the RNAi efficiency in B. xylophilus.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Tylenchida/fisiologia , Interferência de RNA , Xylophilus , Pinus/genética , Doenças das Plantas , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Rabditídios/metabolismo , Endonucleases/genética , Endonucleases/metabolismo
7.
J Am Chem Soc ; 144(26): 11530-11535, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748598

RESUMO

The electrocatalytic C-N coupling for one-step urea synthesis under ambient conditions serves as the promising alternative to the traditional urea synthetic protocol. However, the hydrogenation of intermediate species hinders the efficient urea synthesis. Herein, the oxygen vacancy-enriched CeO2 was demonstrated as the efficient electrocatalyst with the stabilization of the crucial intermediate of *NO via inserting into vacant sites, which is conducive to the subsequent C-N coupling process rather than protonation, whereas the poor selectivity of C-N coupling with protonation was observed on the vacancy-deficient catalyst. The oxygen vacancy-mediated selective C-N coupling was distinguished and validated by the in situ sum frequency generation spectroscopy. The introduction of oxygen vacancies tailors the common catalyst carrier into an efficient electrocatalyst with a high urea yield rate of 943.6 mg h-1 g-1, superior than that of partial noble-metal-based electrocatalysts. This work provides novel insights into the catalyst design and developments of coupling systems.


Assuntos
Oxigênio , Catálise , Hidrogenação
8.
Pest Manag Sci ; 78(2): 703-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34668308

RESUMO

BACKGROUND: In recent years, there has been interest in low-cost, reduced-risk materials that could be used for attract-and-kill of the invasive pest, spotted-wing Drosophila, Drosophila suzukii. This pest causes heavy economic damage to soft-skinned fruits in many countries. In this study, we evaluated physiological and behavioral effects of adding either borax, boric acid, or sodium chloride to diluted Concord grape juice (DGJ), a material that is attractive to adult D. suzukii. RESULTS: Results showed that the addition of borax, sodium chloride and boric acid did not significantly affect the response of adult D. suzukii, relative to DGJ alone. Increases in concentrations (to 5% and 10%) of borax, sodium chloride and boric acid were correlated with decreased ingestion of materials. Mortality of males and females was almost 100% with lower concentrations (1% and 5%) of borax and boric acid within 72 h. The higher concentrations of sodium chloride (5% and 10%) resulted in 100% mortality of both sexes within 72 h. There was no significant effect of chemicals on the number of crop contractions of flies when fed for 4 h. CONCLUSIONS: This study suggests that some substances such as boric acid and borax may act as toxicants without influencing the behavioral response of D. suzukii. © 2021 Society of Chemical Industry.


Assuntos
Drosophila , Vitis , Animais , Boro , Feminino , Controle de Insetos , Masculino , Contração Muscular , Cloreto de Sódio
9.
Microb Ecol ; 84(4): 1245-1255, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34757460

RESUMO

The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a destructive invasive species that exerts devastating effects on most native pines in invaded regions, while many of the non-native pines have resistance to PWN. Recently, increasingly more research is focused on how microbial communities can improve host resistance against pathogens. However, the relationship between the microbial community structures and varying levels of pathogen resistance observed in different pine tree species remains unclear. Here, the bacterial and fungal communities of introduced resistant pines Pinus elliottii, P. caribaea, and P. taeda and native susceptible pines healthy and wilted P. massoniana infected by PWN were analyzed. The results showed that 6057 bacterial and 3931 fungal OTUs were annotated. The pine samples shared 944 bacterial OTUs primarily in the phyla Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi and 111 fungal OTUs primarily in phyla Ascomycota and Basidiomycota, though different pines had unique OTUs. There were significant differences in microbial community diversity between different pines, especially between the bacterial communities of resistant and susceptible pines, and fungal communities between healthy pines (resistant pines included) and the wilted P. massoniana. Resistant pines had a greater abundance of bacteria in the genera Acidothermus (class unidentified_Actinobacteria) and Prevotellaceae (class Alphaproteobacteria), but a lower abundance of Erwinia (class Gammaproteobacteria). Healthy pines had a higher fungal abundance of Cladosporium (class Dothideomycetes) and class Eurotiomycetes, but a lower abundance of Graphilbum, Sporothrix, Geosmithia (class Sordariomycetes), and Cryptoporus (classes Agaricomycetes and Saccharomycetes). These differences in microbial abundance between resistant and healthy pines might be associated with pathogen resistance of the pines, and the results of this study contribute to the studies exploring microbial-based control of PWN.


Assuntos
Microbiota , Nematoides , Pinus , Animais , Pinus/microbiologia , Bactérias/genética , Espécies Introduzidas , Doenças das Plantas
10.
Front Physiol ; 12: 661310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959040

RESUMO

The tree-of-heaven root weevil (Eucryptorrhynchus scrobiculatus) and the tree-of-heaven trunk weevil (Eucryptorrhynchus brandti) are closely related species that monophagously feed on the same host plant, the Ailanthus altissima (Mill) Swingle, at different locations. However, the mechanisms of how they select different parts of the host tree are unclear. As chemosensory systems play important roles in host location and oviposition, we screened candidate chemosensory protein genes from the transcriptomes of the two weevils at different developmental stages. In this study, we identified 12 candidate chemosensory proteins (CSPs) of E. scrobiculatus and E. brandti, three EscrCSPs, and one EbraCSPs, respectively, were newly identified. The qRT-PCR results showed that EscrCSP7/8a/9 and EbraCSP7/8/9 were significantly expressed in adult antennae, while EscrCSP8a and EbraCSP8 shared low sequence identity, suggesting that they may respond to different odorant molecule binding. Additionally, EbraCSP6 and EscrCSP6 were mainly expressed in antennae and proboscises and likely participate in the process of chemoreception. The binding simulation of nine volatile compounds of the host plant to EscrCSP8a and EbraCSP8 indicated that (1R)-(+)-alpha-pinene, (-)-beta-caryophyllene, and beta-elemen have higher binding affinities with EscrCSP8a and lower affinities with EbraCSP8. In addition, there were seven, two, and one EbraCSPs mainly expressed in pupae, larvae, and eggs, respectively, indicating possible developmental-related roles in E. brandti. We screened out several olfactory-related possible CSP genes in E. brandti and E. scrobiculatus and simulated the binding model of CSPs with different compounds, providing a basis for explaining the niche differentiation of the two weevils.

11.
Insects ; 12(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466595

RESUMO

Eucryptorrhynchus scrobiculatus and E. brandti (Coleoptera: Curculionidae) are host-specific pests of Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), causing extensive damage to the host. There are no effective attractants available for pest management. The main aim of this study was to explore the role of host plant-derived volatiles in the behavioral response of both weevil species. In a field experiment, both weevil species showed positive response to phloem, and there was no preference for phloem associated with healthy or injured trees. Significantly more E. brandti adults responded to the olfactory treatments compared to E. scrobiculatus. In a large-arena experiment, both males and females of E. scrobiculatus significantly preferred phloem from the tree trunk while adults of E. brandti responded in significantly greater numbers to tree limbs than to any other parts of host. Females and males of E. scrobiculatus responded positively to all parts of host tested in the Y-tube bioassay, while E. brandti adults were only attracted by the phloem from healthy and injured trees. There were dissimilar electroantennographic responses to compounds such as 1-hexanol and (1S)-(-)-ß-pinene between the two weevil species. This study represents the first report documenting behavioral and electrophysiological responses of E. scrobiculatus and E. brandti to volatiles from various parts of A. altissima and findings may aid efforts to develop attractants.

12.
Microb Ecol ; 81(3): 807-817, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33051738

RESUMO

Pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to pine trees and is spreading all over the world. During the nematode's pathogenesis, plant microorganisms play important roles. However, many microbial communities, such as that in Pinus massoniana, a major host of B. xylophilus that is widely distributed in China, are not well studied, especially the fungal communities. Here, the endophytic and rhizospheric bacterial and fungal communities associated with healthy and B. xylophilus-infected P. massoniana were analyzed. The results showed that 7639 bacterial and 3108 fungal OTUs were annotated from samples of P. massoniana, the rhizosphere, and B. xylophilus. There were significant diversity differences of endophytic microbes between healthy and infected P. massoniana. The abundances of endophytic bacteria Paenibacillus, unidentified_Burkholderiaceae, Serratia, Erwinia, and Pseudoxanthomonas and fungi Penicillifer, Zygoascus, Kirschsteiniothelia, Cyberlindnera, and Sporothrix in infected pines were greater than those in healthy pines, suggesting an association of particular microbial abundances with the pathogenesis of B. xylophilus in pines. Meanwhile, the abundances of microbes of unidentified_Burkholderiaceae, Saitozyma, and Pestalotiopsis were greater and Acidothermus and Trichoderma were lower in the rhizosphere under infected pines than those under healthy pines and the differences might be caused by B. xylophilus-induced weakening of the health of pines. Our study explored the endophytic and rhizospheric microbial community changes potentially caused by B. xylophilus infection of pines.


Assuntos
Microbiota , Nematoides , Pinus , Animais , Bactérias/genética , China
13.
Nat Chem ; 12(8): 717-724, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32541948

RESUMO

The use of nitrogen fertilizers has been estimated to have supported 27% of the world's population over the past century. Urea (CO(NH2)2) is conventionally synthesized through two consecutive industrial processes, N2 + H2 → NH3 followed by NH3 + CO2 → urea. Both reactions operate under harsh conditions and consume more than 2% of the world's energy. Urea synthesis consumes approximately 80% of the NH3 produced globally. Here we directly coupled N2 and CO2 in H2O to produce urea under ambient conditions. The process was carried out using an electrocatalyst consisting of PdCu alloy nanoparticles on TiO2 nanosheets. This coupling reaction occurs through the formation of C-N bonds via the thermodynamically spontaneous reaction between *N=N* and CO. Products were identified and quantified using isotope labelling and the mechanism investigated using isotope-labelled operando synchrotron-radiation Fourier transform infrared spectroscopy. A high rate of urea formation of 3.36 mmol g-1 h-1 and corresponding Faradic efficiency of 8.92% were measured at -0.4 V versus reversible hydrogen electrode.

14.
Pest Manag Sci ; 75(12): 3218-3225, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30972902

RESUMO

BACKGROUND: Eucryptorrhynchus brandti (Harold) is a destructive wood-boring pest of tree of heaven, Ailanthus altissima, in China. At present, the management of E. brandti relies exclusively on frequent applications of synthetic insecticides. Environmentally friendly alternatives to the use of synthetic insecticides would be beneficial. A trunk trap net (TTN), an adhesive trap (AT), and an adhesive trunk trap net (ATTN) were evaluated in their ability to capture E. brandti. RESULTS: Significantly greater laboratory weevil recapture rates were found using the ATTN (78%) than using the TTN (8%) and AT (0%). In total, 45% of marked weevils were captured by the ATTN, an eight-fold increase in catch rates using the TTN in mark-release-recapture field trials in 2017. No marked weevils were captured by the AT. Field trials in 2017 and 2018 showed that the ATTN captured six to seven times more wild weevils than using the TTN. CONCLUSION: Adhesive Trunk Trap nets (ATTNs) were more effective in capturing E. brandti adults than Trunk Trap nets (TTNs). These results support the use of the ATTN as an eco-friendly tool for the integrated management of E. brandti. © 2019 Society of Chemical Industry.


Assuntos
Controle de Insetos/instrumentação , Gorgulhos , Adesivos , Animais
15.
Pest Manag Sci ; 75(10): 2618-2626, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30684313

RESUMO

BACKGROUND: Eucryptorrhynchus scrobiculatus is a major pest of tree of heaven, Ailanthus altissima, in China. Damage caused by E. scrobiculatus has increased as beetle populations have expanded. We developed a trunk trap net (TTN) and two modified TTNs, that is, a TTN with a wire ring (TTN-WR) and a TTN with a spongy cushion (TTN-SC), and evaluated their ability to capture E. scrobiculatus in plantations of A. altissima. RESULTS: We obtained significantly higher laboratory weevil recapture rates using the TTN-WR and TTN-SC (98 and 95.3%, respectively) than using the TTN (65.3%). In total, 84.8 and 85.8% of marked weevils were captured by the TTN-WR and TTN-SC, respectively; 1.52- and 1.54-fold greater than the catch rates using a TTN in mark-release-recapture field trials. Similarly, we captured significantly more wild weevils using the TTN-WR and TTN-SC (2.02- and 2.03-fold more weevils) than using the TTN. Further field trials showed that the TTN-SC treatment significantly reduced densities of weevils and damage to tree of heaven in stands. CONCLUSION: Our results revealed that the TTN-SC is clearly effective for capturing E. scrobiculatus. TTN-SC may be used as an alternative for E. scrobiculatus management with less or no insecticide. © 2019 Society of Chemical Industry.


Assuntos
Ailanthus , Controle de Insetos , Gorgulhos , Ailanthus/crescimento & desenvolvimento , Animais , China , Feminino , Herbivoria , Controle de Insetos/métodos , Masculino
16.
Front Physiol ; 9: 1652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515106

RESUMO

The key to the coexistence of two or more species on the same host is ecological niche separation. Adult Eucryptorrhynchus scrobiculatus and E. brandti both feed on the tree of heaven, Ailanthus altissima, but on different sections of the plant. Olfaction plays a vital role in foraging for food resources. Chemosensory genes on the antennae, the main organ for insect olfaction, might explain their feeding differentiation. In the present study, we identified 130 and 129 putative chemosensory genes in E. scrobiculatus and E. brandti, respectively, by antennal transcriptome sequencing, including 31 odorant-binding proteins (OBPs), 11 chemosensory proteins (CSPs), 49 odorant receptors (ORs), 17 ionotropic receptors (IRs), 19 gustatory receptors (GRs), and three sensory neuron membrane proteins (SNMPs) in E. scrobiculatus and 28 OBPs, 11 CSPs, 45 ORs, 25 IRs, 17 GRs, and three SNMPs in E. brandti. We inferred that EscrOBP8 (EscrPBP1), EscrOBP24 (EscrPBP2) and EbraOBP8 (EbraPBP1), EbraOBP24 (EbraPBP2) were putative PBPs by the phylogenetic analysis. We identified species-specific OR transcripts (10 EscrORs and 8 EbraORs) with potential roles in the recognition of specific volatiles of A. altissima. In addition to conserved "antennal IRs," we also found several "divergent IRs" orthologues in E. scrobiculatus and E. brandti, such as EscrIR16, EbraIR19, and EbraIR20. Compared with other chemosensory genes, GRs between E. scrobiculatus and E. brandti shared lower amino acid identities, which could explain the different feeding habits of the species. We examined OBP expression patterns in various tissues and sexes. Although amino acid sequence similarities were high between EscrOBPs and EbraOBPs, the homologous OBPs showed different tissue expression pattern between two weevils. Our systematic comparison of chemosensory genes in E. scrobiculatus and E. brandti provides a foundation for studies of olfaction and olfactory differentiation in the two weevils as well as a theoretical basis for studying species differentiation.

17.
J Econ Entomol ; 111(4): 1760-1767, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29684194

RESUMO

Eucryptorrhynchus scrobiculatus (Motschulsky) (Coleoptera: Cuculionidae) is a borer that mainly attacks the tree of heaven, Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), and is one of the most damaging forestry pests in China. We developed a trap net for entangling and immobilizing soil-emerging weevils in order to reduce their impact. Recapture rates of weevils in the laboratory was significantly higher with nylon netting of 9, 10, or 11 mm mesh sizes than larger sizes, and these sizes were used to make trial nets for preventing weevil emergence from the soil around impacted trees in the field. Nets were 2 × 2 m with a reinforced border and Velcro-closable, radial slit which allowed the net to be arranged around the base of the tree while producing an unbroken barrier beneath the soil surface (i.e., a modified square trap net, MSTN). Recapture rates of weevils released in the soil did not differ among the MSTNs of 9, 10, or 11 mm mesh sizes. MSTN treatments significantly reduced emergence by naturally-occurring weevils from the soil surrounding trees and reduced numbers of weevils caught in population monitoring traps deployed in treated stands. The results demonstrated that MSTNs might be used to manage of E. scrobiculatus.


Assuntos
Ailanthus , Besouros , Simaroubaceae , Gorgulhos , Animais , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...